

SHAILAJA AKELLA

shailaja.akella93@gmail.com | Seattle, WA, USA | LinkedIn: [shailaja.akella](https://www.linkedin.com/in/shailaja.akella/) | github.com/shailajaAkella

KEYWORDS

Neural coding, Neural dynamics, Brain rhythms, Machine learning, Computer vision, Artificial intelligence, Signal processing, Dynamical systems, Information Theory

EDUCATION

Ph.D. Electrical and Computer Engineering	Aug 2017 – Dec 2021
University of Florida, Gainesville	FL, USA
Thesis title: Neuromodulatory pattern analysis for local field potentials	
M.Sc. Mathematics B.E. Electrical and Electronics Engineering	Aug 2011 – July 2016
Birla Institute of Technology and Science, Pilani	Goa, India

RESEARCH EXPERIENCE

Allen Institute	Seattle, WA
Scientist II	June 2025 – Present

Project: Dynamic routing in the brain | PI: Dr. Shawn Olsen

- Developed low-rank Recurrent Neural Network (RNN) models to disassociate the task- and non-task-related neural subspaces in brain-wide recordings during flexible behaviors
- Applied dynamical systems analyses to reveal context-dependent fixed-point attractors and the computations supporting stimulus gating
- Characterizing multi-region connectivity and interactions between task and non-task variables to probe circuit-level computations involved in decision-making

Scientist I Jan 2022 - June 2025

Projects: Deciphering neuronal variability | PI: Dr. Xiaoxuan Jia; Dynamic routing in the brain | PI: Dr. S. Olsen

- Developed state-based GLM-HMMs to partition neural variability into stimulus-driven, behavioral, and internal-state components, revealing non-stationary sensory encoding in the visual cortex
- Developed GLMs to identify context-encoding single neurons across the brain, revealing a distributed and hierarchical representation of context information across the brain
- Applied computer vision techniques for mouse posture and facial expression tracking, revealing context-dependent changes in mouse facial expressions
- Co-developed a standardized key-point tracking pipeline for videos that improved accuracy and was adopted department-wide

Computational NeuroEngineering Lab Gainesville, FL

Research Assistant Aug 2017 – Dec 2021

Project: Enhancing electrophysiological signal analysis | PI: Dr. Jose Principe

- Designed a generative unsupervised sparse-coding framework to model multi-scale oscillatory dynamics across EEG, ECoG, and LFP data at a high temporal resolution
- Developed feature-extraction pipelines to detect behaviorally informative neural events from brain field potentials, achieving 90% accuracy in predicting left-vs-right movement and 80% accuracy in real-time finger-movement decoding
- Built an information-theoretic causality measure to construct connectivity maps between brain areas from neural spiking and field potential data

Computational Sensorimotor Systems Lab

Research Assistant

College Park, MD

Jan 2017 – Aug 2017

Project: Dynamic auditory response estimation | PI: Dr. Jonathan Z. Simon

- Characterized the auditory response function (RF) from MEG data as a dynamic neural response for selective attention in a competing speaker environment using an L1 regularized least square estimator
- Investigated methods to exploit the sparsity of the temporal RF function using sparse regression analysis to decode the auditory neural response from the MEG signal

Analog Devices, Inc.

Research Intern

Bengaluru, India

Aug 2015 – Aug 2016

Project:

- Designed a predictive model using Kalman filter for offset correction of MEMS gyroscopes and successfully demonstrated 95% accuracy on a Cortex M0 Processor
- Developed a software architecture to reduce the testing time of MEMS gyroscopes by 30% and enumerated limitations in terms of the model, parameters, and design

PUBLICATIONS

1. **Akella, S.**, Ledochowitsch P., ... & Jia X. (2025). Deciphering neuronal variability across states reveals dynamic sensory encoding. *Nature Communications*.
2. **Akella, S.**, Mohebi, A., Principe, J. C., & Oweiss, K. (2021). Marked point process representation of oscillatory dynamics underlying working memory. *Journal of Neural Engineering*.
3. Loza, C. A., Reddy, C. G., **Akella, S.**, & Principe, J. C. (2019). Discrimination of Movement-Related Cortical Potentials Exploiting Unsupervised Learned Representations from ECoGs. *Frontiers in Neuroscience*.
4. **Akella, S.**, Keil, A., Oweiss, K., Principe, J.C. (2021). Local power estimation of neuromodulatory power using point process modeling. *10th International IEEE/EMBS Conference on Neural Engineering (NER)*.
5. **Akella, S.**, and Principe, J.C. (2019). Correntropy based robust decomposition of neuromodulations. *41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*.
6. **Akella, S.**, and Principe J.C. (2018). Quantitative Analysis of a Marked Point Process based Sleep Spindle Detector (MPP-SSD). *40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)*.
7. **Akella, S.**, Bastos, A.M., Principe, J.C., et al. (2022). Directed Information for Point Process Systems. *NeurIPS 2022 Workshop on Information-Theoretic Principles in Cognitive Systems*.

CONFERENCE ABSTRACTS

* = equal contribution

1. McBride, E.*, **Akella, S.***, Gale, S.*., et al. (2025). Distributed context representations in the mouse brain during sensory task switching. *Society for Neuroscience*.
2. LaFehr, V., Cabasco, H., Sridhar, A., **Akella, S.**, et al. (2025). Inactivation of mouse orbitofrontal cortex impairs performance in a visual-auditory switching task. *Society for Neuroscience*.
3. **Akella, S.**, Principe, J.C. (2025). Measurable fields-to-spike causality and its dependence on cortical layer and area. *IEEE 13th International Winter Conference on Brain-Computer Interface*.
4. McBride, E.*, **Akella, S.***, Gale, S.*., et al. (2024). Distributed context representations in the mouse brain during sensory task switching. *Society for Neuroscience*.
5. Pouliot, J., Ward, R., **Akella, S.**, et al. (2023). The marked point process as a method for quantifying transient brain oscillations. *Society for Psychophysiological Research*.
6. **Akella, S.**, Ledochowitsch, P., Siegle, J.H., et al. (2023). Internal states differentially modulate neuronal variability across mouse visual hierarchy. *Lake Conference – Neural Coding & Dynamics*.

7. **Akella, S.**, Ledochowitsch, P., Siegle, J.H., et al. (2023). Distinct brain states modulate visual cortical processing in mouse. *Computational and Systems Neuroscience (COSYNE)*.
8. Miao, B., **Akella, S.**, Ledochowitsch, P., et al. (2023). Visual representation of different levels of abstraction along the mouse visual hierarchy. *Computational and Systems Neuroscience (COSYNE)*.
9. **Akella, S.**, Ledochowitsch, P., Siegle, J.H., et al. (2022). State dependency of neuronal variability. *Society for Neuroscience*.
10. Jia, X., **Akella, S.**, Iyer, R., et al. (2022). Contribution of different sources of variability changes along the mouse visual hierarchy. *Society for Neuroscience*.

PREPRINTS

1. **Akella, S.**, Bastos, A., Miller, E., and Principe, J.C. (2023). Measurable fields-to-spike causality and its dependence on cortical layer and area.
2. **Akella, S.**, and Principe, J.C. (2024). Enhancing information extraction from field potentials in electrophysiology studies.

TALKS

1. Deciphering neuronal variability in the brain. *2023 International Conference on Intelligence: From Cell to Network*, Tsinghua University, Beijing, China, August 2023.
2. Laminar organization of spike-field connectivity during behavior. *Society for Neuroscience*, San Diego, CA, November 2022.
3. Laminar specific interactions in the visual cortex. *Cognitive Neuroscience Society 2022*, San Francisco, CA, April 2022.

WORKSHOPS CONDUCTED

Behavioral States Analysis	January 2025
UW/Allen Collaboratory Workshop Allen Institute	Seattle, WA
Behavioral state analysis using Hidden Markov Models	August 2023, 2025
Summer Workshop on the Dynamic Brain Allen Institute	Seattle, WA
Laminar organization of spike-field connectivity during behavior	June 2024
Workshop for multi-area, high-density, laminar neurophysiology data Vanderbilt University	Nashville, TN

COMMUNITY INVOLVEMENT

Teaching Assistant	August 2020 – Dec 2020
Neural Networks and Deep Learning University of Florida, Gainesville	
<ul style="list-style-type: none"> • Assisted in designing course content, projects, and assignments for a class of 50+ students • Conducted weekly recitation sessions 	
Reviewer	
<i>Nature Communications</i> <i>Computational and Systems Neuroscience (COSYNE)</i> <i>PLOS Computational Biology</i>	
<i> Cognitive Science Society</i> <i>PLOS One</i>	